* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: b(y,z) -> z f(c(a(),z,x)) -> b(a(),z) - Signature: {b/2,f/1} / {a/0,c/3} - Obligation: innermost runtime complexity wrt. defined symbols {b,f} and constructors {a,c} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs b#(y,z) -> c_1() f#(c(a(),z,x)) -> c_2(b#(a(),z)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: b#(y,z) -> c_1() f#(c(a(),z,x)) -> c_2(b#(a(),z)) - Weak TRS: b(y,z) -> z f(c(a(),z,x)) -> b(a(),z) - Signature: {b/2,f/1,b#/2,f#/1} / {a/0,c/3,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,c} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: b#(y,z) -> c_1() f#(c(a(),z,x)) -> c_2(b#(a(),z)) * Step 3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: b#(y,z) -> c_1() f#(c(a(),z,x)) -> c_2(b#(a(),z)) - Signature: {b/2,f/1,b#/2,f#/1} / {a/0,c/3,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,c} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:b#(y,z) -> c_1() 2:S:f#(c(a(),z,x)) -> c_2(b#(a(),z)) -->_1 b#(y,z) -> c_1():1 The dependency graph contains no loops, we remove all dependency pairs. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {b/2,f/1,b#/2,f#/1} / {a/0,c/3,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,c} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))